Fish Identification in Underwater Video with Deep Convolutional Neural Network: SNUMedinfo at LifeCLEF Fish task 2015

نویسنده

  • Sungbin Choi
چکیده

This paper describes our participation at the LifeCLEF Fish task 2015. The task is about video-based fish identification. Firstly, we applied foreground detection method with selective search to extract candidate fish object window. Then deep convolutional neural network is used to classify fish species per window. Classification results are post-processed to produce final identification output. Experimental results showed effective performance in spite of challenging task condition. Our approach achieved best performance in this task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant Identification with Deep Convolutional Neural Network: SNUMedinfo at LifeCLEF Plant Identification Task 2015

This paper describes our participation at the LifeCLEF Plant identification task 2015. Given various images of plant parts such as leaf, flower or stem, this task is about identification of plant species given multi-image observation query. We utilized GoogLeNet for individual image classification, and combined image classification results for plant identification per observation. Our approach ...

متن کامل

Overview of the LifeCLEF 2014 Fish Task

This paper describes the LifeCLEF 2014 fish task, which aimed at benchmarking automatic fish detection and recognition methods by processing underwater visual data. The task consisted of videobased subtasks for fish detection and fish species recognition in videos and one image-based task for fish species classification in still images. Our underwater visual datasets consisted of about 2,000 vi...

متن کامل

X-ray Image Body Part Clustering using Deep Convolutional Neural Network: SNUMedinfo at ImageCLEF 2015 Medical Clustering Task

This paper describes our participation at the ImageCLEF 2015 Medical clustering task. The task is about clustering digital x-ray images into four groups with regard to the body parts. We experimented with deep convolutional neural network (GoogLeNet), finetuning pretrained models for ImageNet dataset. Experimental results showed competitive performance with other top-performing runs.

متن کامل

Content Specific Feature Learning for Fine-Grained Plant Classification

We present the plant classification system submitted by the QUT RV team to the LifeCLEF 2015 plant task. Our system learns a content specific feature for various plant parts such as branch, leaf, fruit, flower and stem. These features are learned using a deep convolutional neural network. Experiments on the LifeCLEF 2015 plant dataset show that the proposed method achieves good performance with...

متن کامل

Fine-tuning Deep Convolutional Networks for Plant Recognition

This paper describes the participation of the ECOUAN team in the LifeCLEF 2015 challenge. We used a deep learning approach in which the complete system was learned without hand-engineered components. We pre-trained a convolutional neural network using 1.8 million images and used a fine-tuning strategy to transfer learned recognition capabilities from general domains to the specific challenge of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015